Feedback

I en punkt $P$ på kurvan $y=\frac{4}{x}$ i första kvadranten dras en tangent. Tangenten begränsar tillsammans med koordinataxlarna en triangel. Visa att arean av denna triangel är oberoende av valet av $P$.

Innehållet är endast tillgängligt för Pluggies medlemmar. Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu
Innehållet är endast tillgängligt för Pluggies medlemmar. Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu
Innehållet är endast tillgängligt för Pluggies medlemmar. Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu

Bra att kunna inom tangenter

Tangenten till kurvan $y=f(x)$ har i punkten $P(a,f(a))$  k-värdet $f'(a)$

Tangentens ekvation

$y-f(a)=f'(a)(x-a)$

$k_{tangent} \cdot k_{normal}= -1 $ (eftersom dessa är vinkelräta).

 

 

Läs teori om tangenter
Enbart medlemmar kan kommentera. Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu

Vi använder cookies på vår webbplats för ett antal syften, inklusive prestanda, funktionalitet och analys.
Lär dig mer om Pluggies använding av cookies.

Godkänn alla Godkänn nödvändiga