Feedback

Bestäm $a>1$ så att uttrycket $a^{2}+\int_{1}^{a}\left(4 x-3 x^{2}\right) d x$ blir så stort som möjligt.

Källa till uppgift: KTH ten 2017 10 25
Innehållet är endast tillgängligt för Pluggies medlemmar. Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu
Innehållet är endast tillgängligt för Pluggies medlemmar. Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu
Innehållet är endast tillgängligt för Pluggies medlemmar. Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu

Bra att kunna inom allmänna integraler

Lite primitiva funktioner

 

f(x) F(x) där C reell konstant
k kx+C
$x^n$ $(n\neq -1)$ $\frac{x^{n+1}}{n+1}+C$
$\frac{1}{x}$ $x\neq 0)$ $\ln |x| +C$
$e^x$ $e^x+C$
$a^x$ $(a>0, a \neq 1)$ $\frac{a^x}{\ln a}+C$
$\sin x$ $- \cos x + C$
$\cos x$ $\sin x + C$
Enbart medlemmar kan kommentera. Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu

Vi använder cookies på vår webbplats för ett antal syften, inklusive prestanda, funktionalitet och analys.
Lär dig mer om Pluggies använding av cookies.

Godkänn alla Godkänn nödvändiga