Feedback

Om man lyfter upp framdelen på en bil och sedan släpper den kan den då uppkomna avtagande svängningen i en punkt på fronten mätt i cm skrivas som $y=4,0e^{-0,25t}\cos(5,0t)$.

Beräkna farten för punktens svängning vid tiden $t=4,0 s$

Källa till uppgift: KTH 2017 03 15
Innehållet är endast tillgängligt för Pluggies medlemmar. Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu
Innehållet är endast tillgängligt för Pluggies medlemmar. Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu
Innehållet är endast tillgängligt för Pluggies medlemmar. Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu

Bra att kunna inom derivata och tillämpningar

$\frac{d}{dx}x^a=a\cdot x^{a-1}$

$\bigstar$ Några derivator som är bra att kunna utantill $\bigstar$

$\frac{1}{x}\Rightarrow -\frac{1}{x^2}$

$\sqrt{x}\Rightarrow \frac{1}{2\sqrt{x}}$

$e^{kx}\Rightarrow ke^{kx}$

$a^x\Rightarrow a^x\cdot ln(a)$

$ln(x)\Rightarrow \frac{1}{x}$

$sin(x)\Rightarrow cos(x)$

$cos(x)\Rightarrow -sin(x)$

Enbart medlemmar kan kommentera. Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu

Vi använder cookies på vår webbplats för ett antal syften, inklusive prestanda, funktionalitet och analys.
Lär dig mer om Pluggies använding av cookies.

Godkänn alla Godkänn nödvändiga