Feedback

Kurvorna $y=\frac{x^{2}}{a}$ och $y=1-a x^{2}, a>0$ begränsar tillsammans ett område med area S. För $a>0$ har $\mathrm{S}$ en enda extremvärde som är ett maximum. För vilket $a$ har $\mathrm{S}$ sitt största värde?

Källa till uppgift: KTH ten 21 10 27
Innehållet är endast tillgängligt för Pluggies medlemmar. Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu
Innehållet är endast tillgängligt för Pluggies medlemmar. Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu
Innehållet är endast tillgängligt för Pluggies medlemmar. Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu

Bra att kunna inom integraler

Lite primitiva funktioner

 

f(x) F(x) där C reell konstant
k kx+C
$x^n$ $(n\neq -1)$ $\frac{x^{n+1}}{n+1}+C$
$\frac{1}{x}$ $x\neq 0)$ $\ln |x| +C$
$e^x$ $e^x+C$
$a^x$ $(a>0, a \neq 1)$ $\frac{a^x}{\ln a}+C$
$\sin x$ $- \cos x + C$
$\cos x$ $\sin x + C$
Läs teori om integraler
Enbart medlemmar kan kommentera. Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu

Vi använder cookies på vår webbplats för ett antal syften, inklusive prestanda, funktionalitet och analys.
Lär dig mer om Pluggies använding av cookies.

Godkänn alla Godkänn nödvändiga