Uppgift 483
En lösning till ekvationen $2tan(x)+\frac{1}{cos(x)}=1$ är $x=0$, men det finns fler. Bestäm samtliga lösningar.
Logga in eller Bli medlem nu
Logga in eller Bli medlem nu
Logga in eller Bli medlem nu
Bra att kunna inom trigonometriska ekvationer
Trigonometriska ettan
$sin^2u+cos^2u=1$
Additionssatserna
$sin(u+v)=sin(u)cos(v)+cos(u)sin(v)$
$sin(u-v)=sin(u)cos(v)-cos(u)sin(v)$
$cos(u+v)=cos(u)cos(v)-sin(u)sin(v)$
$cos(u-v)=cos(u)cos(v)+sin(u)sin(v)$
$tan(u+v)=\frac{tan(u)+tan(v)}{1-tan(u)tan(v)}$
$tan(u-v)=\frac{tan(u)-tan(v)}{1+tan(u)tan(v)}$
Formler för dubbla vinkeln
$sin(2u)=2sin(u)cos(u)$
$cos(2u)=cos^2u-sin^2u=2cos^2(u)-1=1-2sin^2(u)$
$tan(2u)=\frac{2{\hspace{2mm}}tan(u)}{1-tan^2(u)}$
Formler för halva vinkeln
$sin^2\frac{u}{2}=\frac{1-cos(u)}{2}$
$cos^2\frac{u}{2}=\frac{1+cos(u)}{2}$
Produktformlerna
$2cos(u)cos(v)=cos(u-v)+cos(u+v)$
$2sin(u)sin(v)=cos(u-v)-cos(u+v)$
$2sin(u)cos(v)=sin(u-v)+sin(u+v)$
Uttrycket $a \hspace{1mm} sin(x)+b\hspace{1mm}cos(x)$
$a \hspace{1mm} sin(x)+b\hspace{1mm}cos(x)=\sqrt{a^2+b^2}\hspace{1mm}sin(x+v)$
$a \hspace{1mm} sin(x)-b\hspace{1mm}cos(x)=\sqrt{a^2+b^2}\hspace{1mm}sin(x-v)$
Då $a>0, b>0$ $tan(v)=\frac{b}{a}$ och $v\in (0^{\circ},90^{\circ})$
Logga in eller Bli medlem nu