Uppgift 1270
Uppgift 1270 - För betygsnivå A
Låt $f(x)=A \cos (3 x) .$ Bestäm konstanten $A$ och en primitiv funktion $F(x)$ till $f(x)$ så att $F(\pi / 6)=1$ och så att $F(\pi / 2)=2$.
Källa till uppgift:
KTH ten 19 06 05
Innehållet är endast tillgängligt för Pluggies medlemmar.
Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu
Logga in eller Bli medlem nu
Innehållet är endast tillgängligt för Pluggies medlemmar.
Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu
Logga in eller Bli medlem nu
Innehållet är endast tillgängligt för Pluggies medlemmar.
Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu
Logga in eller Bli medlem nu
Bra att kunna inom primitiva funktioner
Lite primitiva funktioner
f(x) | F(x) där C reell konstant |
k | kx+C |
$x^n$ $(n\neq -1)$ | $\frac{x^{n+1}}{n+1}+C$ |
$\frac{1}{x}$ $x\neq 0)$ | $\ln |x| +C$ |
$e^x$ | $e^x+C$ |
$a^x$ $(a>0, a \neq 1)$ | $\frac{a^x}{\ln a}+C$ |
$\sin x$ | $- \cos x + C$ |
$\cos x$ | $\sin x + C$ |
Logga in eller Bli medlem nu