Uppgift 1994
Uppgift 1994 - För betygsnivå C
Bestăm största och minsta vărde för $f(x)=x^{3}-3 x^{2}, \quad-2 \leq x \leq 1$
Källa till uppgift:
KTH ten 21 08 27
Innehållet är endast tillgängligt för Pluggies medlemmar.
Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu
Logga in eller Bli medlem nu
Innehållet är endast tillgängligt för Pluggies medlemmar.
Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu
Logga in eller Bli medlem nu
Innehållet är endast tillgängligt för Pluggies medlemmar.
Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu
Logga in eller Bli medlem nu
Bra att kunna inom extrempunkter
Kritiska punkter återfinns i $f'(x)=0$ förutsatt att både funktionen och dess derivata är definierade i detta område.
För andraderivata gäller att $f''(x)>0$ är en minpunkt
$f''(x)<0$ är en maxpunkt
Om andraderivatan är lika med noll behöver punkten undersökas noggrannare.
Logga in eller Bli medlem nu