Uppgift 1990
Uppgift 1990 - För betygsnivå C
Bestäm största och minsta värde för funktionen $f(x)=\frac{10}{x}-\frac{1}{x^{2}}$ i intervallet $\frac{1}{10} \leq x \leq 2$
Källa till uppgift:
KTH ten 22 03 16
Innehållet är endast tillgängligt för Pluggies medlemmar.
Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu
Logga in eller Bli medlem nu
Innehållet är endast tillgängligt för Pluggies medlemmar.
Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu
Logga in eller Bli medlem nu
Innehållet är endast tillgängligt för Pluggies medlemmar.
Prova i 30 dagar för 19 kr.
Logga in eller Bli medlem nu
Logga in eller Bli medlem nu
Bra att kunna inom extrempunkter
Kritiska punkter återfinns i $f'(x)=0$ förutsatt att både funktionen och dess derivata är definierade i detta område.
För andraderivata gäller att $f''(x)>0$ är en minpunkt
$f''(x)<0$ är en maxpunkt
Om andraderivatan är lika med noll behöver punkten undersökas noggrannare.
Logga in eller Bli medlem nu